Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Regulated and Unregulated Emissions Reduction with Retrofit Catalytic After-Treatment on Small Two Stroke S.I. Engine

2000-06-19
2000-01-1846
The contribution to environmental pollution due to mopeds and motorcycles equipped with 2-stroke engines is very high. Then European regulations will impose in the next future severe limits on pollutant emissions of such vehicles. Up to 40% of the charge at high load and low speed can be lost during scavenging, therefore exhaust hydrocarbon speciation is similar to fuel composition, i.e. with a comparable content of benzene. The use of rich air-fuel mixtures, necessary to reduce cyclic variations and improve driveability during transients, determines also high carbon monoxide emissions. On the other hand NOx emissions are very low in all operating conditions, due to the rich mixtures and the high residual gas fraction. An effective solution to reduce emissions from current two-stroke engines for two wheelers in a short time could be retrofitting circulating vehicles with a catalyst for exhaust after-treatment.
Technical Paper

A Comparative Analysis of Combustion Process in D.I. Diesel Engine Fueled with Biodiesel and Diesel Fuel

2000-03-06
2000-01-0691
The 1997 Kyoto International Conference Protocol committed industrialized countries to reduce their global emissions of greenhouse gases within the period 2008 2012 by at least 5% with respect to 1990. In view of this and following the European Community directives, the Italian government approved a three-year pilot project to promote the experimental employment of biodiesel. The methyl esters of vegetable oils, known as biodiesel are receiving increasing interest because of their low environmental impact and their potential as an alternative fuel for diesel engines as they would not require any significant modification of existing engines. Consequently, an experimental research program has been developed to evaluate performance and emissions of a Diesel engine fueled with a methyl ester derived from rape seed (Rapeseed Methyl Ester or RME) by changing the composition of the diesel fuel-RME mixture. This program aims to analyze the performance and emissions of a turbocharged D.I.
Technical Paper

Regulated and Benzene Emissions of In-Use Two-Stroke Mopeds and Motorcycles

2000-03-06
2000-01-0862
The attention on emissions of two-wheelers has been poor in the past, but today in countries with a large two-wheeler population it gives a significant contribution to aggregate emissions. In this paper the results obtained on a fleet composed by 22 two-stroke motorcycles (including mopeds) are presented. Sixteen in-use mopeds and six 125 cm3 motorcycles have been tested over ECE 47 and ECE 40 driving cycles respectively. Regulated emissions (CO, HC, NOx), carbon dioxide, benzene and fuel consumption have been evaluated by fueling motorcycles with two different gasoline formulations. One gasoline was a commercial Italian leaded gasoline with 1% benzene content; the other was a lower benzene and aromatics content gasoline. Benzene emissions decreased according to benzene content of gasoline.
Technical Paper

An Assessment of Predictivity of CFD Computations of Combustion and Pollutants Formation in D.I. Diesel Engines

1996-10-01
962055
In the present paper the status of development of diesel combustion and pollutants formation modelling at Diesel Engines and Fuels Research Division of Istituto Motori is pointed out. The main features and performances of the model are discussed comparing the numerical results with some experimental data. For the experiments a single cylinder direct injection diesel engine was used. In the head of the engine two small quartz windows have been mounted, in order to obtain pictures of the injection and combustion processes by high speed cinematography, and to apply the two colour technique for soot temperature and soot loading measurements. The soot loading was measured by the two colour technique and the a priori and the experimental uncertainties of the measurement technique were carefully evaluated. In addition, the engine may be also equipped with a second head, in which a fast acting valve allows the direct sampling of the combustion products.
Technical Paper

Two Dimensional Analysis of Diesel Combustion by Spectral Flame Emissivity Measurements

1996-02-01
960838
Spectral flame emissivity and absorption measurements with high temporal and spatial resolution were performed in an optically accessible high-swirl divided-chamber Diesel system. Simultaneous determination of soot temperature, soot volume fraction and the OH radical concentration were made from the start to the end of the combustion in 153 locations equally distributed in the chamber. The engine was run at 2000 rpm and at fixed air-fuel ratio realizing 200 consecutive combustion cycles. To visualize the spatial and temporal spray and flame evolution, direct high-speed photographic sequences were taken at 8000 frames/s. The photographic sequences showed that the spray is strongly distorted and mixed by very high swirl resulting in a well premixed region where the combustion starts. The OH radicals were detected in the fuel reaction zone. Moreover OH concentration and soot volume fraction are well correlated with soot temperature.
Technical Paper

Experimental Evaluation of Fuel Consumption and Emissions in Congested Urban Traffic

1995-10-01
952401
In this paper, first results regarding measurements of fuel consumption and emissions, relative to different traffic conditions and a specific urban area, are presented. The experimental approach used for the evaluation of emissions consists in: a) recording on-road car and engine operating conditions during designed trips performed in the center of Naples (Italy) by an instrumented car, b) determining by multivariate statistical analysis driving cycles characterizing typical traffic conditions, c) measuring emissions and fuel consumption in laboratory using defined driving cycles. Fuel flow rate measurements are performed at each second, while emissions are detected along a cycle and an average value per kilometer is obtained. Operating conditions of engine during laboratory testing are related to on-road operating conditions by comparing fuel consumption and exhaust gases temperatures measurements performed on-road and in laboratory by the same device.
Technical Paper

3-D Analysis of the Flow Through a Multihole V.C.O. Nozzle for D.I. Diesel Engine

1995-02-01
950085
A 3-D analysis of the flow through a multihole, V.C.O. (Valve Covered Orifice) nozzle for D.I. Diesel Engine has been carried out. The analysis was performed by means of a finite element code. The nozzle comprises five injection holes. Aims of the analysis were: the investigation of the pressure drops along the conical clearance between the needle and the nozzle; the evaluation of the energy losses in the injection holes; the disclosure of the velocity profile at the injection hole outlets. the differences of flowrate for each hole with geometrical asymmetries. This kind of analisys is the first step of a more complete spray analysis; in fact, the spray from an injection hole is influenced by the injection pressure and the velocity profile. In particular, the needle lift and the needle tip deviation have been parametrized. The analysis betters both the theoretical knowledge of this kind of nozzle and the hydraulic phenomena occurring inside.
Technical Paper

The Influence of Fuel Composition on Particulate Emissions of DI Diesel Engines

1993-10-01
932733
The effect of different fuel parameters on emissions is difficult to understand, the response depending upon different engine technologies. In addition the isolation of some of the fuel variables is often very hard. The present paper discusses the main results obtained testing a matrix of 14 fuels designed for obtain large variations of cetane number, sulphur and aromatic contents of Diesel oil. The aromatic structure of fuels and its effect on particulate emissions was also investigated. A linear regression analysis was performed in order to isolate the main controlling factors on particulate emissions. Finally the influence of aromatic contents of fuel on unregulated emissions was also assessed.
Technical Paper

Soot Formation and Oxidation in a DI Diesel Engine: A Comparison Between Measurements and Three Dimensional Computations

1993-10-01
932658
Three dimensional computations of Diesel combustion were performed using a modified version of Kiva II code. The autoignition and combustion model were tuned on a set of experimental conditions, changing the engine design, the operating conditions and the fuel characteristics. The sensitivity of the model to the different test cases is acceptable and the experimental trends are well reproduced. In addition the peak of pressure and temperature computed by the code are quite close to the experimental values, as well as the pressure derivatives. Once tuned the combustion model constants, different but simple formulations for the soot formation and oxidation processes were implemented in the code and compared with the experimental measurements obtained both with fast sampling technique and two colors method. These formulations were found unable to give good prediction in a large range of engine operating conditions, even if the model tuning may be very good for each test point.
Technical Paper

Three Dimensional Calculations of DI Diesel Engine Combustion and Comparison whit In Cylinder Sampling Valve Data

1992-10-01
922225
A modified version of KIVA II code was used to perform three-dimensional calculations of combustion in a DI diesel engine. Both an ignition delay submodel and a different formulation of the fuel reaction rate were implemented and tested. The experiments were carried out on a single cylinder D.I. diesel of 0.75 I displacement equipped with sensors to detect injection characteristics and indicated pressure. A fast acting sampling valve was also installed in the combustion chamber to allow the measurement of main pollutants during the combustion cycle, by an ensemble average technique. Computational and experimental results are compared and the discrepancies are discussed. Today the demand for light duty engines that produce less emission and consume less fuel is increasing. Thus, if limits on CO2 emissions are established, the direct injection diesel engine for light duty applications will become an attractive option.
X